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Client-aided HE for Opaque Compute Offloading
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• CHOCO enables privacy-preserving computation for resource-constrained devices

• CHOCO utilizes Homomorphic Encryption (HE) and Client-Aided Encrypted Computing

• CHOCO introduces client-optimized encrypted algorithms & hardware acceleration

• CHOCO makes client responsibility competitive with local compute

• CHOCO benefits generalize to diverse applications
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Resource-Constrained Devices are Everywhere

5

Health Monitoring Infrastructure MonitoringWildlife Monitoring



114 mg/dL

Computational Demands Exhaust Sensor Resources
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109 / 72
97% SpO2

78 BPM

Device Size
Data Quantity Computation Complexity



Privacy-Preserving Computation Offload
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Communication
Transfer Data & Results

Shared Offload Server
Semi-Honest Central Compute

Resource-Constrained Private Client
Secure Data Collection

78 BPM



Privacy-Preserving Computation Offload
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Communication
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Shared Offload Server
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FHE: [Fully] Homomorphic Encryption 
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Correct Expected Output

Homomorphic Encryption (HE)
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cta x ctb
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HE Challenges & Limitations
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Linear OperationsHigh Computation Costs Parameter SelectionNoise Growth & 
Arithmetic Depth



HE Challenges & Limitations
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Linear OperationsHigh Computation Costs Parameter SelectionNoise Growth

Offloading Entire Encrypted Applications is Still Infeasible in Many Scenarios



Client-Aided Encrypted Computing
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Client-Aided Encrypted Inference

16Image: https://www.pyimagesearch.com/2016/08/01/lenet-convolutional-neural-network-in-python/
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• Systematically limits arithmetic depth & regularly refreshes noise

Linear Layers Non-Linear



Quantifying Client Responsibility
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• ARM Cortex-A7 CPU Client

• Up to 180x overhead to 

offload compute

• Dominated by Homomorphic 

Encryption (HE) operations

180x

Microsoft Research. 2019. Simple Encrypted Arithmetic Library (release 3.4), https://github.com/Microsoft/SEAL
M. Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (release 2.2). https://www.tensorflow.org/. 

https://github.com/Microsoft/SEAL
https://www.tensorflow.org/
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• ARM Cortex-A7 CPU Client

• Up to 180x overhead to 

offload compute

• Dominated by Homomorphic 

Encryption (HE) operations

180x

Microsoft Research. 2019. Simple Encrypted Arithmetic Library (release 3.4), https://github.com/Microsoft/SEAL
M. Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (release 2.2). https://www.tensorflow.org/. 

CHOCO Reduces Client-Side Computation by up to 341x through SW Algorithms & HW Acceleration

https://github.com/Microsoft/SEAL
https://www.tensorflow.org/


Complete Client-Aided System Improvements
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Server-
Optimized 
Solutions
[Samardzic ‘21]
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CHOCO

0.06 TFLite

CHOCO

5.01

Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald Dreslinski, Christopher Peikert, and Daniel 

Sanchez. 2021. F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption. Association for Computing Machinery, 

New York, NY, USA, 238–252.
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Client-aided HE for Opaque Compute Offloading
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Hardware Acceleration
Encryption & Decryption

HE Algorithm Optimization
Minimize Arithmetic Depth



Encrypted Algorithm Optimization
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HE Algorithms
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Algorithm Optimizations Impact Client Costs
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Windowed Rotations
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Rotate << 2
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Windowed Rotations
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Rotate << 2

. . . 1 2 3 4 . . .

. . . 3 4 1 2 . . .

Ideally: Values wrap around within a window of interest



4084 4085 … 1 2 3 4 … 4083

Windowed Rotations
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Rotate << 2

. . . 1 2 3 4 . . .

Actually: Values wrap around the entire ciphertext vector



Standard Permutations
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Rotational Redundancy
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. . . 1 2 3 4 1 2 . . .

. . . 1 2 3 4 1 2 . . .

Rotate << 2

Redundant Entries

• Novel Input Packing

• Single HE Rotation

• Low arithmetic depth



CHOCO Algorithms Reduce Client Computation
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• CHOCO SW = SEAL baseline + Rotational Redundancy• 50% Smaller Ciphertexts

• Average 1.7x improvement over SEAL

96.3x

1.87x

• Average 62.5x remaining overhead vs TFLite



CHOCO Algorithms Reduce Client Computation
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• 50% Smaller Ciphertexts• CHOCO SW = SEAL baseline + Rotational Redundancy

• Average 1.7x improvement over SEAL

96.3x

1.87x

• Average 62.5x remaining overhead vs TFLite

CHOCO Algorithm Optimizations Provide a Critical but Insufficient Reduction in Client Computation



Hardware Acceleration
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Existing FPGA Acceleration is Incomplete
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• FPGA HW = CHOCO SW + Encryption/Decryption FPGA

A. Mert, E. Ozturk, and E. Savas. 2020. Design and Implementation of Encryption/Decryption Architectures for BFV Homomorphic Encryption 
Scheme. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28, 02 (feb 2020), 353–362.

• Average 14.5x remaining overhead vs TFLite

22x

4.4x



CHOCO – Through Accelerated Cryptographic Operations
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CHOCO-TACO Encryption & Decryption Hardware 
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CHOCO-TACO Encryption & Decryption Hardware 
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CHOCO-TACO Encryption & Decryption Hardware 
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CHOCO-TACO Hardware Optimization
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CHOCO-TACO Hardware Optimization
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CHOCO-TACO Hardware Optimization
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CHOCO-TACO Hardware Optimization
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CHOCO-TACO Hardware Optimization
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CHOCO-TACO Hardware Optimization
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Modules & Functional Blocks
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CHOCO-TACO Hardware Optimization
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Full Design Space Study in Paper!



CHOCO-TACO Encryption & Decryption Hardware 
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19.3 mm2 area. Consumes 200 mW power, .1228 mJ to perform a single encryption in .66 ms.
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CHOCO-TACO Accelerates Client Compute
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• CHOCO HW = CHOCO SW + CHOCO-TACO Encryption/Decryption Simulated ASIC

• Average 123.3x Improvement over CHOCO software alone

182x



CHOCO-TACO Accelerates Client Compute
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• Average 29x better than FPGA accelerators

• Average 2.2x better than local compute via 

41.6x

3.7x
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CHOCO Makes Client End-to-End Costs Feasible
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• Privacy-Preserving Offload can be Competitive with Local Compute

• 37% decrease in energy consumption for VGG16

• Up to 66% communication reduction from SEAL baseline

37%

CHOCO Makes End-to-End Client Costs Feasible



CHOCO Algorithms Reduce Communication
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• Up to three orders of magnitude improvement in communication

• Nearly 90x improvement over Gazelle [Juvekar `18]

• 28x better than LoLa (not client-aided) [Brutzkus `19]

90x

28x

- C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. 2018. GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In Proceedings of the 27th USENIX Conference on 
Security Symposium (Baltimore, MD, USA) (SEC’18). USENIX Association, USA, 1651–1668.
- Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. 2019. Low Latency Privacy Preserving Inference. In Proceedings of the 36th International Conference on Machine Learning 
(Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, Long Beach, California, USA, 812–821.
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Unmodified DNN Networks

Encrypted Distance Calculations
(K-Means & KNN)

PageRank

See Paper for More Applications & Results



Conclusions
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• CHOCO motivates and prioritizes client-aware optimizations

• CHOCO alogorithm optimizations reduce communication by orders of magnitude over prior work

• CHOCO-TACO hardware comprehensively accelerates client-side cryptographic primitives

• CHOCO enables participation from resource-constrained devices in client-aided encrypted computation

• CHOCO makes client responsibility competitive with local compute

• CHOCO benefits generalize to diverse applications
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